Fast Multi-Label Low-Rank Linearized SVM Classification Algorithm Based on Approximate Extreme Points

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast SVM training using approximate extreme points

Applications of non-linear kernel Support Vector Machines (SVMs) to large datasets is seriously hampered by its excessive training time. We propose a modification, called the approximate extreme points support vector machine (AESVM), that is aimed at overcoming this burden. Our approach relies on conducting the SVM optimization over a carefully selected subset, called the representative set, of...

متن کامل

Adversarial Extreme Multi-label Classification

The goal in extreme multi-label classification is to learn a classifier which can assign a small subset of relevant labels to an instance from an extremely large set of target labels. Datasets in extreme classification exhibit a long tail of labels which have small number of positive training instances. In this work, we pose the learning task in extreme classification with large number of tail-...

متن کامل

Multi-Label Classification Based on Low Rank Representation for Image Annotation

Annotating remote sensing images is a challenging task for its labor demanding annotation process and requirement of expert knowledge, especially when images can be annotated with multiple semantic concepts (or labels). To automatically annotate these multi-label images, we introduce an approach called Multi-Label Classification based on Low Rank Representation (MLC-LRR). MLC-LRR firstly utiliz...

متن کامل

Active Learning with Multi-Label SVM Classification

Multi-label classification, where each instance is assigned to multiple categories, is a prevalent problem in data analysis. However, annotations of multi-label instances are typically more timeconsuming or expensive to obtain than annotations of single-label instances. Though active learning has been widely studied on reducing labeling effort for single-label problems, current research on mult...

متن کامل

Extreme Learning Machine for Multi-Label Classification

Xia Sun 1,*, Jingting Xu 1, Changmeng Jiang 1, Jun Feng 1, Su-Shing Chen 2 and Feijuan He 3 1 School of Information Science and Technology, Northwest University, Xi’an 710069, China; [email protected] (J.X.); [email protected] (C.J.); [email protected] (J.F.) 2 Computer Information Science and Engineering, University of Florida, Gainesville, FL 32608, USA; [email protected] 3 Department o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2018

ISSN: 2169-3536

DOI: 10.1109/access.2018.2854831